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ABSTRACT

The western Alboran peridotites crop out across the Strait of Gibraltar (western 
end of the Mediterranean) and are the largest worldwide exposure of subcontinental 
lithospheric mantle. The present study focuses on the Cenozoic part of the long and 
complex metamorphic-deformation history of the western Alboran peridotites. Dur-
ing the Cenozoic, continental lithosphere thinning in a back-arc setting occurred and 
allowed the extensional exhumation of subcontinental mantle from 70–90 km depth 
to shallow crustal levels. Continental rift inversion at 20 Ma then triggered the fi nal 
crustal emplacement of the western Alboran peridotites: the Sierra Bermeja, Alpu-
jata, and Carratraca peridotites, which constitute the Ronda peridotites in the Betics, 
and the Ceuta and Beni Bousera peridotites in the Rif. A compilation of ductile shear 
indicators, recorded along the crust-mantle extensional shear zone during lithosphere 
thinning, is used here to reconstruct the three-dimensional geometry of the Oligocene–
Miocene continental rift. The western Alboran peridotite bodies were back-rotated 
in their initial position at 20 Ma using (1) paleomagnetic data and (2) structural con-
straints for an ~100 km west/southwestward displacement of the Alboran Domain. 
A consistent NNE-SSW shear direction is found with locally opposite sense of shear. 
Two-dimensional numerical models of continental rifting indicate that such opposite 
shearing at the Moho identifi es the initial position of the rift axis. On these bases, we 
propose an oblique rift system elongated N-S, with several NW-SE rift axes connected 
by NNE-SSW transform faults. The western Alboran peridotites correspond thus to 
different segments of this oblique rift system. These fi ndings are then tentatively com-
pared to the position of (1) present-day early Miocene depocenters, and (2) onshore 
faults, possibly reactivating transform and axis faults of the former rift.
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INTRODUCTION

The Ronda and Beni Bousera peridotites crop out close 
to the Gibraltar arc and are major features of westernmost Medi-
terranean geology. Although recent tomographic images show a 
subvertical slab below the Gibraltar arc (i.e., the Alboran high 
Vp anomaly; Bezada et al., 2013; Villaseñor et al., 2015), the 
relationship between exhumation of these peridotites bodies 
(hereafter called the western Alboran peridotites) and subduction 
slab rollback evolution is still unresolved. In the central Medi-
terranean (Apennines), starting from the late Oligocene, subduc-
tion slab rollback led to the successive opening of the Ligurian- 
Provençal basin and the Tyrrhenian Sea, from the Gulf of Genoa 
to the south of the Balearic system (Doglioni et al., 1997; Wortel 
and Spakman, 2000). In contrast, in the Western Mediterranean 
(Gibraltar), the amount and the timing of subduction rollback 
remain controversial (Lonergan and White, 1997; Wortel and 
Spakman, 2000; Vergés and Férnandez, 2012).

The Gibraltar region is characterized by two orogenic sys-
tems, the Betics in Spain and the Rif in Morocco (Faccenna et 
al., 2004; Rosenbaum and Lister, 2004; Royden, 1993; Chalouan 
et al., 2008; Crespo-Blanc and Frizon de Lamotte, 2006). Two 
Tertiary fold-and-thrust belts surround the metamorphic domain, 

which crops out along the coast and at the bottom of the Alboran 
Sea and is therefore named Alboran Domain (Didon et al., 1973; 
García-Dueñas et al., 1992; Hsü et al., 1973; Kornprobst, 1973; 
Sánchez-Gómez et al., 1999). The western portion of the Albo-
ran Domain includes the Ronda and Beni Bousera exposures of 
subcontinental lithospheric mantle (western Alboran peridotites 
[WAP] in Fig. 1; Darot, 1974; Kornprobst, 1974; Obata, 1980). 
The age and the tectonic context of the exhumation of the western 
Alboran peridotites and their relationships with the geodynamics 
of the Western Mediterranean system remain controversial. The 
western Alboran peridotites and their surrounding Alboran con-
tinental crustal rocks have indeed experienced a polycyclic and 
complex history.

At least three stages of deformation have been recorded: 
(1) Variscan subduction and collision, testifi ed by Variscan high-
pressure and partial melting in the crustal rocks (e.g., Zeck and 
Whitehouse, 2002; Gueydan et al., 2015; Sánchez-Navas et al., 
2014); (2) Jurassic Tethys opening, testifi ed by Jurassic ages in 
aluminous pyroxenite layers within the western Alboran perido-
tites (Sánchez-Rodríguez and Gebauer, 2000); and (3) Alpine 
shortening and nappe stacking during Eocene times (e.g., Ver-
gés and Fernández, 2012; Platt et al., 2013) followed by Oligo-
cene–Miocene thinning in the back-arc region of the Alboran 

Figure 1. (A) Simplifi ed tectonic map of the western Alboran system, with western Alboran peridotites (WAP) and late Oligocene and early 
Miocene sediments outlined in green and orange, respectively, within the Alboran Domain (dark gray). IEZB—Internal-External zones boundary 
(Platt et al., 2013).
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 subduction, as testifi ed by Alpine ages in the regional foliation in 
peridotites and host continental crust rocks (e.g., Blichert-Toft et 
al., 1999; Gueydan et al., 2015), and by the ages and geochem-
istry of the Malaga dikes (Duggen et al., 2004; Esteban et al., 
2013; Turner et al., 1999). Note that many other tectonic sce-
narios for Tertiary mantle exhumation have been proposed as 
alternative models to the back-arc exhumation, including: extru-
sion of a mantle wedge during transpression along a subduct-
ing slab (Mazzoli and Martín-Algarra, 2011; Tubía, 1994) or the 
action of successive detachments during the extensional collapse 
of the Betic-Rif crustal wedge (Platt et al., 2003a; Van der Wal 
and Vissers, 1993).

In this paper, we will focus on the Tertiary stage of exhu-
mation of the western Alboran peridotites, from mantle depths 
(70–80 km) to the surface (Platt et al., 2003a; Garrido et al., 
2011; Hidas et al., 2013; Van der Wal and Vissers, 1993; Mazzoli 
et al., 2013; Gueydan et al., 2015). The progressive rollback of 
the Alboran slab triggered upper continental plate thinning and 
hence the unroofi ng of the western Alboran peridotites in a back-
arc setting. Subsequently, the thrusting of the former thinned lith-
osphere onto the Iberian and African margin led to the inversion 
of the back-arc (Afi ri et al., 2011; Précigout et al., 2013; Frasca et 
al., 2015). The inversion led to the progressive westward migra-
tion of the Alboran Domain and therefore to the formation of the 
Gibraltar arc (Frasca et al., 2015).

The aim of this paper is to reconstruct the geometry of the 
Oligocene–Miocene back-arc continental rift. A compilation 
of ductile shear indicators occurring at the Moho during litho-
sphere thinning is presented here and used, together with two-
dimensional (2-D) numerical models of continental rifting, to 
reconstruct the initial position of the rift system. Accounting for 
clockwise and counterclockwise rotations of the peridotite bod-
ies during the tectonic inversion of the rift, we show that exten-
sional unroofi ng of the western Alboran peridotites occurred in 
an oblique continental rift system elongated approximately N-S 
in map view.

WESTERN ALBORAN TECTONIC FEATURES

The Internal-External zones boundary (IEZB, Platt et 
al., 2013; Fig. 1) shapes the western Alboran Domain across 
the Gibraltar arc and separates the External unmetamorphosed 
zone from the Internal metamorphic zone (Fig. 1). The Internal 
zone, called hereafter Alboran Domain, is characterized in the 
westernmost part by (1) the largest worldwide outcrop of sub-
continental lithospheric mantle rocks (Obata, 1980) and (2) late 
Oligocene–early Miocene sediments, both onshore, at the base of 
the “Alozaina Basin” (Serrano et al., 2007), and offshore, at the 
base of the Western Alboran Basin (Comas et al., 1992; Watts et 
al., 1993; Fig. 1A). These early Miocene sediments are usually 
interpreted as related to a rifting phase, most probably starting 
at ca. 30 Ma and only registered in the western Alboran (Argles 
et al., 1999; Comas et al., 1999). We will show in this paper that 
the sediment deposition can be correlated with an Oligocene– 

Miocene continental rifting system, which was responsible for 
the extensional exhumation of the western Alboran peridotites 
from mantle depth to shallow crustal levels.

Western Alboran Peridotites

The position of the western Alboran peridotites, exactly 
where the arcuate trend of the boundary between the Internal and 
External zones bends, coincides with a large positive Bouguer 
gravimetric anomaly (Bonini et al., 1973; Torné et al., 2000). The 
Ronda peridotites crop out in southern Spain and can be divided 
into three bodies: Sierra Bermeja (SB), Sierra Alpujata (Alp), 
and Carratraca (Ca), which are connected by small serpentinitic 
outcrops (Fig. 1B; Darot, 1974; Navarro-Vilá and Tubía, 1983; 
Sánchez-Gómez et al., 1999; Tubía et al., 2004). The Ceuta ser-
pentinitic sliver links the Spanish part with the Moroccan part 
of the western Alboran peridotites and suggests an original con-
tinuity between the peridotitic outcrops on the two sides of the 
Gibraltar arc (Sánchez-Gómez et al., 1995; Sánchez-Gómez et 
al., 2002). The Beni Bousera body in the Moroccan Rif is smaller 
in size than the Ronda outcrops but has similar characteristics 
(Fig. 1B; Afi ri et al., 2011; Frets et al., 2014; Kornprobst, 1974; 
Reuber et al., 1982).

The western Alboran peridotites have a roughly concentric 
pattern of all the three peridotite facies (i.e., garnet-, spinel-, and 
plagioclase-peridotite facies; Obata, 1980). Several structural-
petrological studies of the Sierra Bermeja body have shown that 
the three traditional facies domains are related to the develop-
ment of three different structural domains, coinciding partly with 
geochemical variations (Fig. 1; Lenoir et al., 2001; Soustelle et 
al., 2009; Suen and Frey, 1987; van der Wal and Bodinier, 1996; 
van der Wal and Vissers, 1993, 1996).

(1) Garnet-spinel-peridotites are mylonitized on a kilometer 
scale at the top of the mantle bodies (Figs. 1C, 2B; Précigout et 
al., 2013; van der Wal and Vissers, 1996). The mylonite formed 
by grain-size reduction and dynamic recrystallization in subcon-
tinental mantle conditions, during decreasing pressure starting 
at 85 km (Argles et al., 1999; Balanyá et al., 1997; Garrido et 
al., 2011; Précigout et al., 2013; Tubía et al., 2004). The foli-
ated spinel-peridotites below (Fig. 2C) are part of the same shear 
zone as the garnet-peridotite, as shown by Précigout et al. (2007, 
2013). Crosscutting relationships between mylonite and tec-
tonites described in Van der Wal and Vissers (1996) suggest that 
the spinel-tectonites were formed in a fi rst stage of deformation 
and then transposed and parallelized at the base of the crust as a 
result of a large-scale gradient due to ductile strain localization 
(Précigout et al., 2013).

(2) Coarse-grained granular spinel-peridotites occur in the 
central part of the peridotite bodies, where Al-rich garnet pyro-
xenite is replaced by Al-poorer spinel-websterite (Figs. 1C and 
2D). The spinel facies is separated by a “recrystallization front” 
defi ned by development of coarse granular peridotites oblique to 
and at the expense of the spinel-tectonite domain (van der Wal 
and Bodinier, 1996; Fig. 2).
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(3) Porphyroclastic plagioclase-tectonites are at the base 
and developed in shallower conditions, with subordinate lay-
ers of spinel-plagioclase-olivine websterite (Figs. 1C, 2D, 2F, 
2G; van der Wal and Vissers, 1996). The deformation evolved 
to low-temperature and low-pressure mylonites (Hidas et al., 
2013). The domain contains dikes of gabbroic rocks that testify 
to the extreme thinning of the continental lithosphere (Hidas et 
al., 2015).

Main Crust-Mantle Tectonic Contacts

Figure 3 shows tectonic maps of the western Betics and Rif 
with the western Alboran peridotites bodies, cropping out within 
the Alboran continental crust rocks, highlighted. Three types of 
tectonic contacts divide the western Alboran peridotites from the 
surrounding continental crustal rocks in the tectonic maps and 
cross section of Figure 3: the “Moho” contact, a thrust contact, 
and a high-angle fault contact.

“Moho” Contact
The Moho contact, at the top of the peridotites, is 

marked by the garnet-spinel- mylonites below and deep crust 
above (sheared granulites and migmatitic gneisses, Figs. 2A, 2B, 

Figure 2. Main petrological and tec-
tonic facies, presented in a schematic 
log with corresponding outcrop pictures, 
within the western Alboran peridotites 
(WAP) with two major tectonic contacts: 
(A) on top of the crust-mantle extension-
al shear zone (crust-mantle extensional 
shear zone) and (E) below the Ronda 
peridotites thrust (RPT). (B) Mylonitic 
peridotites with a pervasive foliation 
enclosing a centimeter-scale garnet-
spinel- pyroxenite layer exhibiting strong 
boudinage. (C) Porphyroclastic spinel- 
peridotite with a decimeter-scale stretch-
ed garnet-pyroxenite layer, parallel to 
the peridotite foliation. (D) Coarse-
granular peridotite displaying coarse 
black spinels and  centimeter-size green-
ish clinopyroxenes. (E) Landscape pho-
tograph of the Ronda peridotites thrust 
and location of the outcrop pictures in 
D and F. (F) Coarse-porphyroclastic 
lherzolite with a foliation, marked by 
a strong shape preferred orientation of 
the pyroxenes, oblique to the vertical 
greenish pyroxenite. (G) Detail of the 
plagioclase rim around the spinel in the 
plagioclase tectonite. 

2C). In the following discussions, this contact will be called the 
crust-mantle extensional shear zone (thick white line in Figs. 2A, 
3). Moreover, for sake of clarity, the continental rocks above 
the peridotites will be called the upper western Alboran (locally 
denoted in the past as Los Reales [Upper Alpujarrides; Tubía et 
al., 1997] or Filali [Lower Sebtides; Kornprobst, 1974]). We will 
discuss this contact in detail in the “Crust-Mantle Extensional 
Shear Zone” section.

Thrust Contact
The thrust contact is at the bottom of the peridotites 

(Fig. 2E; Tubía et al., 1997, 2013). For sake of clarity, in the fol-
lowing, the large diversity of continental rocks below the Ronda 

Figure 3. Tectonic maps of (A) the western Betics (modifi ed from Fra-
sca et al., 2015) and (C) the Rif (modifi ed from Gueydan et al., 2015; 
Negro et al., 2006) with (B) an E-W cross section (location reported in 
A; modifi ed from Frasca et al., 2015). The ductile shearing senses at 
the Moho (red arrows with mean direction of shearing in black) are in-
ferred from the compilation of data shown in the histograms (see text for 
references). RPT—Ronda peridotites thrust; CMESZ—crust- mantle 
extensional shear zone; IEZB—Internal-External zones boundary. 
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peridotites will be called the lower western Alboran peridotites 
(locally called Ojèn—Tubía et al., 1997; Guadaiza—Esteban 
et al., 2008; Yunquera—Esteban et al., 2005; Blanca-Hacho—
Didon et al., 1973; Dorsale—Chalouan et al., 2008; Vitale et al., 
2014: “Las Nieves Unit”—Mazzoli and Martín-Algarra, 2011).

The thrust will hereafter be called the Ronda peridotites 
thrust (thick black line in Figs. 2E, 3) and is marked by (1) a 
metamorphic sole in the underlying crustal rocks (Esteban et 
al., 2008; Mazzoli et al., 2013; Tubía et al., 1997), and (2) top-
to-the-W mylonites in the plagioclase-peridotites (Hidas et al., 
2013; Frasca et al., 2015; Figs. 2 and 3). The Ronda peridotites 
thrust cuts through the whole lithosphere section (peridotites 
and crust). However, the degree of high-temperature metamor-
phism along the thrust is variable, from high grade (migmatites 
in the Ojén region) to low grade (Dorsale in Morocco). The 
high-grade metamorphic sole is observable onshore in Spain 
through tectonic windows within the peridotites (Blanca unit; 
Fig. 3A and cross section on Fig. 3B), while the low-grade 
thrust is observable in Morocco, where only the most external 
part of the Ronda peridotites thrust crops out (Dorsale unit; 
Fig. 3C).

Activity on the Ronda peridotites thrust was coeval with the 
formation of the Gibraltar arc and deformation in the External 
zone. The Ronda peridotites thrust age is well constrained by 
a wealth of high-temperature ages at ca. 20 Ma in leucogranite 
dikes associated with the “hot” Ronda peridotites thrust, and by 
syndeformational Burdigalian-Langhian deposits in both foot-
wall and hanging wall of the Internal-External boundary zone 
(Frasca et al., 2015). The early Miocene therefore marked the 
onset of the main shortening event in the western Betics, as 
exemplifi ed by the formation at that time of the Guadalquivir 
foreland basin (Férnandez et al., 1998; Fig. 1). In Morocco, the 
main shortening event is also proposed to have started in the early 
Miocene and produced a nappe stack involving the Beni Bousera 
peridotite (Vitale et al., 2014). Progressive westward migration 
of the shortening led to the formation of the Gibraltar arc and also 
to extensional reactivation of previously shortening zones (see 
Discussion in Frasca et al., 2015).

High-Angle Faults 
High-angle faults (with normal or strike-slip kinemat-

ics) crosscut the two former contacts and locally allow the direct 
juxtaposition of mantle rocks with very shallow upper-crustal 
rocks (north of the Sierra Alpujata massif in Spain and east of 
Beni Bousera in Morocco for example; Fig. 3). Frasca et al. 
(2015) have shown that thrusting and westward motion started 
at 20 Ma, took place from 20 Ma to present day, and occurred by 
the coeval activity of N60° frontal thrusts, N140 normal faults, 
and E-W strike-slip corridors that accommodated a N-S strain 
gradient. In the present study, we used these structural constraints 
to identify the direction and the amount of displacement of the 
Alboran Domain since 20 Ma (see details in the next section). 
Note also that widespread low-angle normal faults are present 
in the upper western Alboran and may locally mark the crust-

mantle contact (Esteban et al., 2013; García-Dueñas et al., 1992; 
Frasca et al., 2016).

In the rest of this paper, we will discuss mainly the crust-
mantle extensional shear zone and its signifi cance for mantle 
unroofi ng. The other contacts accommodated the horizontal dis-
placement of the unroofed mantle and are thus essential for the 
restoration presented in this paper.

Crust-Mantle Extensional Shear Zone and Continental 
Lithosphere Thinning

In the Betics and Rif, the upper western Alboran section rep-
resents an entire continental crustal section on top of subcontinen-
tal mantle rocks (Balanyá et al., 1997; Gueydan et al., 2015), and, 
from bottom to top, they are composed by: (1) lower crust (dark 
brown in Fig. 3: granulites, migmatitic gneiss, with peak tem-
perature higher than 650 °C; see Negro et al., 2006); (2) midcrust 
(brown in Fig. 3: gneiss, schists, with peak temperature between 
650 °C and 350 °C; see Negro et al., 2006); and (3) upper crust 
(light brown in Fig. 3: low to unmetamorphosed sediments). The 
local names of these crustal domains are Alpujarrides and Filali 
(Lower Sebtides), in Spain and Morocco, respectively, for the 
metamorphic domain (deep and midcrust), and Malaguide and 
Ghomaride, for the nonmetamorphosed domain.

In Spain, the present-day thickness of this exhumed con-
tinental crust is <10 km, with minimum values at <1 km (see 
cross section on Fig. 3B; García-Dueñas et al., 1992; Frasca et 
al., 2016), and this testifi es to a major crustal thinning event. 
In the Rif, the thickness of the exhumed continental crust is of 
the order to 5–10 km (see Negro et al., 2006). The crustal rocks 
have recorded a continuous decompression locally coeval with 
an increase in temperature and partial melting (Balanyá et al., 
1997; Soto and Platt, 1999; Platt and Whitehouse, 1999; 
Barich et al., 2014; Gueydan et al., 2015).

The mantle in the upper western Alboran section has also 
recorded a strong decompression from mantle depth (garnet-
peridotites) to low pressure (spinel- and even plagioclase- 
peridotites; e.g., Garrido et al., 2011; Afi ri et al., 2011). Note 
that a former unroofi ng event from the diamond stability 
fi eld to the garnet fi eld may have occurred either in Variscan 
or Jurassic time (Pearson et al., 1989; Davies et al., 1993; 
Sánchez- Rodríguez and Gebauer, 2000). Deformation in the 
mantle shows a strain gradient from mantle to crust, suggest-
ing a mantle-crust shear zone (Précigout et al., 2007, 2013). In 
Sierra Bermeja, Carratraca, and Beni-Bousera, the crust-mantle 
contact is characterized by garnet-spinel-mylonites, while the 
core of the peridotites is made of spinel-tectonites. Preserva-
tion of garnet-facies peridotites in the most deformed zone has 
been related to the fast cooling during deformation in the shear 
zone, while adiabatic evolution with retrogression may have 
occurred in the center of the peridotite (see discussions in Afi ri 
et al., 2011; Garrido et al., 2011). Consistently, partial melting 
occurred at the end of the extensional deformation of the perido-
tites in the core of the massif (Précigout et al., 2013), leading to 
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Cr-pyroxenite generation (Marchesi et al., 2012), and the for-
mation of the granular peridotites (recrystallization front; Van 
der Wal and Vissers, 1996; Van der Wal and Bodinier, 1996; 
Lenoir et al., 2001).

Foliation trajectories (Fig. 3) and shearing (discussed in 
detail in the next section) are consistent in both crust and mantle 
and testify to a regional extensional deformation event affecting 
the whole continental lithosphere (Balanyá et al., 1997; Tubía and 
Cuevas, 1986; Argles et al., 1999; Frasca et al., 2016; Précigout 
et al., 2013). The crust-mantle boundary accommodated the thin-
ning and was responsible for the mantle unroofi ng from the gar-
net stability fi eld to shallow depths. The crust-mantle extensional 
shear zone can be therefore identifi ed in the fi eld by garnet- and 
spinel-mylonite associated with granulites and migmatitic gneiss 
(drawn in white thick line in Figs. 3 and 4). In Spain, this associa-
tion is well observed in the northern rim of Sierra Bermeja and 
Carratraca, and south of Sierra Alpujata. In Morocco, the crust-
mantle extensional shear zone crops out only in the western rim 
of the Beni Bousera massif (Fig. 3). The upper western Alboran 
section is therefore a complete strongly attenuated continental 
lithosphere section, thinned in a back-arc setting (cross section in 
Fig. 3B; Garrido et al., 2011; Marchesi et al., 2012; Précigout et 
al., 2013; Gueydan et al., 2015).

Age of the Crust-Mantle Extensional Shear Zone

The age of the continental lithosphere-thinning event is con-
strained mainly by three data points. (1) The Malaga tholeiite 
dikes, attributed to the partial melting of the peridotites during 
their adiabatic unroofi ng, intruded the thinned upper western 
Alboran section in Spain at ca. 30 Ma (Esteban et al., 2013). 
(2) High-temperature ages of zircon/monazite within the regional 
foliation associated with the thinning event yield ages around 
23–21 Ma (Platt et al., 2003a; Gueydan et al., 2015). (3) Synrift 
deposits of late Oligocene/early Aquitanian age (Ciudad Granada 
deposits of Serrano et al., 2007) occur sparsely in both Spain and 
Morocco. These three data points support a Oligocene–Miocene 
age for the continental rifting. However, note that older ages can 
be found in the upper western Alboran rocks, since they have 
recorded a polycyclic history, from Variscan collision to Alpine 
thinning through Jurassic-Tethys opening (Sanchéz-Rodríguez 
and Gebauer, 2000). These ages led in the past to consider the 
mantle unroofi ng as Mesozoic, followed by a Tertiary nappe 
stacking event and then by extensional collapse of the nappe 
stack (Chalouan and Michard, 2004; Van der Wal and Vissers, 
1993). Recent observations and geochronological ages in the 
upper western Alboran section lead us to propose instead an 

Figure 4. Outcrop pictures of shear criteria within the crust-mantle extensional shear zone (CMESZ, schematically 
drawn as a tectonic log to the left) in both (A) deep crust (garnet-rich mylonitic gneisses) and (C) uppermost mantle 
(garnet-spinel-mylonitic peridotites) within the Carratraca massif (see location on Fig. 1), where the only continuous 
crust-mantle extensional shear zone outcrop (B) has been reported (see Argles et al., 1999).
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Oligocene–Miocene age for unroofi ng of the western Alboran 
peridotites from 70 km depths to shallow levels (Garrido et al., 
2011; Afi ri et al., 2011; Frasca et al., 2016; Gueydan et al., 2015). 
Variscan or Mesozoic extension was responsible for mantle 
unroofi ng from greater depth (100 km or larger) to 70 km. A dis-
cussion on different tectonic models is beyond the scope of the 
present paper and can be found in Frasca et al. (2016).

In summary, the Oligocene–Miocene tectonic activity of 
the western Alboran was marked by (1) strong continental litho-
sphere thinning, immediately followed by (2) inversion/thrusting 
of this thinned lithosphere. The crust-mantle extensional shear 
zone was responsible for unroofi ng of the subcontinental mantle 
from mantle to crustal depths, while the Ronda peridotites thrust 
was responsible for the inversion and fi nal crustal emplacement 
of the peridotites and of the entire Alboran Domain onto the 
continental margin (Iberia and Morocco). This switch from slab 
rollback to back-arc inversion/shortening has been recently con-
strained by new structural and geochronological data by Frasca et 
al. (2017) and is consistent with the model proposed by Duggen 
et al. (2004) based on the analysis of magmatic products in the 
Alboran Domain.

Shearing at the “Moho”

The crust-mantle extensional shear zone shows unequivocal 
shear criteria at regional scale, as discussed already. The histo-
grams in Figure 3 allow us to defi ne the mean direction of shear-
ing along the crust-mantle extensional shear zone, hereafter called 
shearing at the “Moho,” for the different peridotite bodies of the 
western Alboran system. The mean shear sense is reported in 
red on the tectonic maps (Fig. 3). Shear indicators are in general 
consistent in the mantle and deep crust and derive mainly from 
outcrop-scale observation of C′-type structures and porphyroclast 
rotation either in garnet-spinel-mylonite or in granulites (Fig. 4).

In Beni Bousera, Afi ri et al. (2011) and Frets et al. (2014) 
have shown a remarkable consistency between deep crust (granu-
lite, Filali migmatites and gneiss) and mantle shear criteria, with a 
mean shearing direction at N330. In Sierra Bermeja, Précigout et 
al. (2013) have shown a mean shearing direction in the mylonitic 
rim of the peridotites (crust-mantle extensional shear zone) at 
N235. In Carratraca, Frasca et al. (2016) have recently acquired 
new data that are compatible in trend with the data set of Argles 
et al. (1999), showing a mean direction of shearing in the Moho 
at about N275. Note that while Frasca et al. (2016) supported a 
top-to-the-SW shearing interpretation in the deep crust and upper-
most mantle, Argles et al. (1999) suggested a top-to-the-NE or 
even a coaxial deformation pattern, as also suggested by Tubía et 
al. (2004). In the present paper, we will follow the recent work of 
Frasca et al. (2016), to which the readers are referred for a detailed 
discussion on the senses of shear at the crust-mantle boundary in 
the Carratraca Massif. In Sierra Alpujata, the shearing is in the 
opposite sense at N95 (Tubía and Cuevas, 1986). In deep crustal 
rocks of Ceuta and Cabo Negro, the shearing is oriented ~N25 
(Didon et al., 1973; Sanz de Galdeano and Ruiz Cruz, 2016).

The compilation of data (histograms and maps; Fig. 3) 
shows a random distribution of shear directions and even oppo-
site senses of shear that are diffi cult to interpret in the present-day 
confi guration. Before any interpretation of these senses of ductile 
shearing at the Moho, rotation and horizontal displacement dur-
ing the rift inversion have to be taken into account. A restoration 
is thus essential in order to discuss the signifi cance of the shear-
ing observed at the “Moho” and therefore the original geometry 
of the rift.

RESTORED GEOMETRY OF THE OLIGOCENE–
MIOCENE RIFT SYSTEM

Back-Rotation of Western Alboran Peridotite Bodies from 
Paleomagnetic and Tectonic Data

After the rifting process that occurred from 30 to 21 Ma, 
the onset of thrusting (Ronda peridotites thrust) yielded to the 
progressive westward displacement of the Alboran Domain and 
to the progressive curvature of the thrust system, forming the 
Gibraltar arc (Platt et al., 2003b; Balanyá et al., 2007; Frasca et 
al., 2015). The vertical-axis rotation revealed by paleomagnetic 
data is an important aspect of the kinematic evolution of the 
Gibraltar arc (e.g., Calvo et al., 1994; Cifelli et al., 2008; Mat-
tei et al., 2006; Osete et al., 1988; Platzman, 1992; Platzman 
et al., 1993, 2000; for reviews, see also Chalouan et al., 2008; 
Cifelli et al., 2016). In the Alboran Domain, the mantle bodies 
rotated clockwise about a vertical axis in the Spanish side and 
counterclockwise in the Moroccan side (Feinberg et al., 1996; 
Villasante-Marcos et al., 2003; Osete et al., 1988; Berndt et al., 
2015). These data are based on magnetite in peridotites and ser-
pentinites (Villasante-Marcos et al., 2003; Berndt et al., 2015) or 
from leucocratic granitic dikes inside the mantle (Feinberg et al., 
1996). In this second case, the paleomagnetic declination clearly 
refl ects the rotation after dike cooling, i.e., during rift inversion 
and thrusting (after 20 Ma).

In detail, the different paleomagnetic declination measure-
ments of the western Alboran peridotites are 35° toward NE for 
the Sierra Bermeja (SB in Fig. 5), 55° toward NE for Carratraca 
(Ca in Fig. 5), 45° toward NE for the Sierra Alpujata (Alp in 
Fig. 5; Villasante-Marcos et al., 2003), 70° toward NW for Beni 
Bousera (BB in Fig. 5; Feinberg et al., 1996), and 20° toward NW 
for Ceuta (Ce in Fig. 5; Berndt et al., 2015). These paleomagnetic 
declinations are reported on Figure 5A together with the inferred 
senses of ductile shearing at the Moho for the western Alboran 
peridotites discussed in the previous section.

The clockwise rotation on the Spanish side and counter-
clockwise rotation on the Moroccan side are consistent with the 
westward migration of the Alboran Domain and a maximum 
of displacement in the center (close to Gibraltar), tending to 
decrease to the north and to the south. Regional dextral simple 
shearing occurred on the Spanish side, associated with the clock-
wise rotation, and regional sinistral simple shearing occurred in 
the Moroccan side, associated with counterclockwise  rotation 
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(Frasca et al., 2015; Platt et al., 2013; Balanyá et al., 2007). 
This displacement fi eld is consistent with the observed similar 
amounts of rotation on the two sides of the arc, if we consider a 
further rotation subsequent to the late Miocene of 20° counter-
clockwise on the Rif side of the Gibraltar arc that is not recorded 
in the Betic side of the western Alboran Domain (Cifelli et al., 
2008), and that was responsible for the slight rotation observed 
in the central part of the system (Ceuta).

In the Torcal Corridor, Frasca et al. (2015) identifi ed a major 
E-W dextral strike-slip lateral ramp that has accommodated the 
westward migration of the Alboran Domain since 20 Ma (Fig. 5A; 
see also Sanz de Galdeano et al., 1996; Sanz de Galdeano and 
López Garrido, 2012; Barcos et al., 2015). Similarly, during the 
Miocene, the Jebha fault in Morocco accommodated the west-
ward motion of the Alboran Domain (Olivier, 1981; Vitale et al., 
2014), although the present-day active structures are around the 
Nekor fault, 80 km further east (Poujol et al., 2014), while in the 
western Betics, they are concentrated few kilometers to the north 
of the Torcal area (Fig. 1; Díaz-Azpiroz et al., 2014). These two 
major strike-slip zones, Torcal to the north and Jebha to the south, 
therefore have accommodated most of the Alboran displacement 
during the clockwise and conterclockwise rotation observed in 
the peridotites and will be therefore used to constrain the direc-
tion of the horizontal motion for the retrodeformation of the 
western Alboran peridotites. The initial positions of the western 
Alboran peridotites are assumed to be at the end of the Torcal and 
Jebha systems and imply ~100 km of horizontal displacement. 
The amount of displacement estimated is slightly lower than the 
cross-section estimations of Platt et al. (2003b), but it is in line 
with the observed continuity between the Internal and External 

zone of the Lower Miocene sedimentary basin in the western 
Betics (Frasca et al., 2015).

Figure 5B presents the restored position of the western Albo-
ran peridotites, with their associated shearing sense at the Moho. 
As shown by Berndt et al. (2015) and Chalouan et al. (2008), 
all the ultramafi c bodies are aligned N-S, east of the present-day 
position of Malaga (Fig. 5B). The shearing directions at the Moho 
are almost identical after back-rotation, between N20° and N50°, 
and thus defi ne a unique N-S back-arc continental rift system. 
The scattering in shear directions at the Moho in the present-day 
situation therefore refl ects a nonhomogeneous horizontal rota-
tion along a vertical axis during rift inversion. However, although 
the shear directions are similar after back-rotation, the senses of 
shear remain different, with the Carratraca–Sierra Bermeja pair 
showing consistent shearing direction, while Sierra Alpujata, 
Ceuta, and Beni Bousera show an opposite sense of shear.

We propose now to document the sense of shearing during 
continental rifting using a numerical model that will serve as a 
guide for the interpretation of the opposite shear senses along the 
“Moho” in the restored Oligocene–Miocene rift system.

2-D Numerical Models: Opposite Shearing at the Moho 
during Continental Lithosphere Extension

Figure 6A shows fi nite strain (fi rst invariant of the strain ten-
sor) after 140 km of horizontal extensional displacement applied 
at the two vertical walls of the model. This 2-D model result was 
extracted from the recent analysis of Gueydan and Précigout 
(2014), and readers are referred to that paper for model and 
rheological parameters. The rheology of the lithosphere  mantle 

Figure 5. (A) Present-day tectonic map of the western Alboran with the main peridotite bodies in green, showing 
ductile senses of shear at the Moho (red arrows; from Fig. 3), paleomagnetic rotation (gray arrows with amount of 
rotation; see text for references), and major strike-slip corridors (Torcal in the Betics and Jebha in the Rif) accommo-
dating the displacement during thrusting and westward/southwestward motion. Ca—Carratraca; SB—Sierra Bermeja; 
Alp—Sierra Alpujata; Ce—Ceuta; BB—Beni Bousera. (B) Restored geometry at 20 Ma after back-rotation of the 
peridotite bodies with their ductile senses of shear at the Moho (red arrows). See text for details. CW—clockwise; 
CCW— counterclockwise.
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accounts for ductile strain localization since, in the western 
Alboran, continental lithosphere thinning is mainly controlled by 
ductile strain localization (Précigout et al., 2007; Précigout and 
Gueydan, 2009).

The high-strength subcontinental mantle, with a Moho 
temperature lower than 800 °C, leads to strongly heterogeneous 
lithospheric thinning and permits symmetric strain localization 
in the center of the model (Gueydan et al., 2008). This necking 
instability at the lithosphere scale triggers the Moho uplift below 
the rift center and is accommodated by two major mantle shear 
zones with opposite senses of shear (top to the left, left of the 
rift axis, and top to the right, right of the rift axis; see close-up 
of rift center on right side of Fig. 6A). These two mantle shear 
zones with opposite sense of shear allow mantle unroofi ng in 
the center and thus lithosphere thinning. In the rift center, these 
mantle shear zones tend to be parallel to the uplifted Moho, as it 
can be observed in the fi eld in the western Alboran (crust-mantle 
extensional shear zone). The 2-D numerical result therefore dem-
onstrates that, during lithosphere thinning, the senses of shear at 
the “Moho” were opposite on the two side of the rift system: 
top-to-the-outside of the rift center, as schematically drawn on 

Figure 6B. Note that these conclusions are valid also for most of 
numerical models of the rifting process.

Tectonic Interpretation: Rift Axes and Rift Transforms
These numerical fi ndings were used to interpret the rift sys-

tem after accounting for back-rotation and horizontal displace-
ment (Fig. 7). Sierra Bermeja (SB) and Sierra Alpujata (SAlp) 
show opposite sense of shear: top to N20 for the Sierra Alpu-
jata and top to N230 for the Sierra Bermeja. We can thus infer 
a rift axis between these two peridotite bodies, oriented perpen-
dicular to the shearing direction, i.e., NW-SE. This hypothesis is 
moreover consistent with the E-W cross section of Figure 3B. At 
the transition between Sierra Bermeja and Sierra Alpujata, the 
crustal thickness reaches its minimum value (lower than a few 
tens of meters), which suggests the locus of the maximum crustal 
thinning and hence the possible locus of the rift axis. Late strike-
slip faults that developed in this area moreover could not have 
been responsible for such a strong crustal thinning (Albornoque 
fault—Tubía et al., 2013; Coín corridor—Frasca et al., 2015).

Carratraca (Ca) shows the same sense of shear as the Sierra 
Bermeja (SB), top to N200, but in an originally different  position, 

Figure 6. (A) Two-dimensional (2-D) numerical results of continental rifting (fi nite strain after 140 km of horizontal 
extensional displacement, extracted from Gueydan and Précigout, 2014) with, on the right, a focus on the rift center 
and associated shearing in two conjugate mantle shear zones. (B) Three-dimensional (3-D) schematic description of the 
continental rifting process and related ductile shearing at the Moho. 
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Figure 7. Geometry of the rift at 21 Ma in which the western 
Alboran peridotites (WAP) were exhumed: a N-S oblique rift 
system (in dark gray) with NW-SE rift axes (in red, perpendicu-
lar to the shearing direction at the Moho; Fig. 5B) connected 
with NNE-SSW transform faults (in blue). Inferred NNE-SSW 
direction of stretching is shown with red arrow. Ca—Carratraca; 
SB—Sierra Bermeja; Alp—Sierra Alpujata; Ce—Ceuta; BB—
Beni Bousera.

further north of Sierra Bermeja. The rift axis of the oblique rift 
related to the Carratraca massif was therefore further north. Car-
ratraca and the Sierra Bermeja–Sierra Alpujata pair were thus 
most probably connected by a transform fault, oriented parallel 
to the shearing direction (N20). Following the same procedure, 
we can propose that the rift axis related to Beni Bousera (BB) 
was to the south, as well as the rift axis related to Ceuta (Ce in 
Fig. 7). Two other transforms at N20 are inferred to have con-
nected Ceuta and Beni Bousera to the rest of the rift system.

On the basis of this evidence, we defi ne an oblique rift, with 
NNE-SSW direction of stretching but within a N-S–trending area 
of thinning, characterized by NW-SE rift axes and NNE-SSW 
transform faults (Fig. 7). The Sierra Bermeja–Sierra Alpujata 
pair belongs to the same rift axis, while Carratraca, Ceuta, and 
Beni Bousera correspond to other rift axes. All the different rift 
centers were connected by NNE-SSW transform faults.

DISCUSSION

To discuss the implications of our interpretations, it is neces-
sary to compare the present-day geology with our reconstruction. 
For that purpose, Figure 8 presents the N-S oblique rift system 
at 20 Ma, with synrift deposits of late Oligocene to early Mio-
cene age (Fig. 8A), and the deformed shape of the former rift, in 

Figure 8. (A) Original position of the 
oblique rift system (dark gray; Fig. 7) 
at 21 Ma with late Oligocene and early 
Miocene synrift depocenters in orange, 
showing initial thrust position (black 
thick line) and displacement vectors 
related to westward thrusting (black 
arrows). (B) Deformed rift area during 
westward thrusting (dark gray) and relat-
ed position of the Lower Miocene sedi-
ment depocenters (stars, onshore, and 
thick orange line, offshore). (C) Inferred 
orientation and position of the paleo–
transform faults (blue) and of the paleo–
rift axes (red) after their displacement 
and rotation. Ca— Carratraca; SB— 
Sierra Bermeja; Alp—Sierra Alpujata; 
Ce—Ceuta; BB—Beni Bousera.
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the present-day situation, after thrusting and westward motion 
(Fig. 8B). As described in the previous section, the westward 
thrusting was accommodated at the edge of the Alboran system 
by two major strike-slip corridors: a dextral corridor to the north 
(Torcal) and sinistral corridor to the south (Jebha; Fig. 8A). This 
scenario implies a maximum E-W horizontal displacement in the 
center of the Alboran and a northward and southward decrease 
of the E-W horizontal displacement toward the corridors and the 
Iberian and African margins (Fig. 8A).

The differential displacement led to a strongly curved shape 
of the deformed rift system, as highlighted by the Lower Miocene 
offshore depositional area (Fig. 8B). The peculiar geometry of the 
Lower Miocene offshore depocenter is consistent with the off-
shore compilations of seismic data provided in Watts et al. (1993) 
and Comas et al. (1992) and drawn on Figure 1. Moreover, the 
displacement also explains the existence along the Gibraltar arc 
of early Aquitanian onshore deposits (see Figs. 1 and 8B), which 
have been interpreted as the surface expression of an extensional 
oblique event (Serrano et al., 2007). Note that during thrusting, 
the westward migration of the active front may have led to a 
slight spreading of the western Alboran Domain (i.e., larger out-
cropping area in the present-day situation [Fig. 8B] than at 20 Ma 
[Fig. 8A]; Frasca et al., 2015).

The hypothesis of several rift axes connected with transform 
faults in an oblique rift can also be compared to the present-day 
surface geology. Figure 8C shows the present-day position of the 
rift axes and transform faults in the Betics and Rif, after apply-
ing the vertical-axis rotation inferred by the paleomagnetic dec-
linations (Fig. 5A). In the Betics, paleo–transform faults should 
be oriented E-W, while paleo–rift axes should be roughly N-S 
(Fig. 8C). As reported earlier herein, the existence of a paleo–rift 
axis between Sierra Bermeja and Sierra Alpujata and south of 
Carratraca is consistent with the inferred very low value of the 
thickness of the upper western Alboran crust (Fig. 3).

Frasca et al. (2015) provided detailed structural constraints 
that support the existence of a major E-W strike-slip corridor 
inside the Alboran Domain, between Carratraca and the Sierra 
Alpujata (Coín strike-slip corridor; see Fig. 3A; also Albornoque 
fault in Tubía et al., 2013). This corridor separates the western 
Betics into two different domains with different upper western 
Alboran crustal thickness that cannot be justifi ed by the Coín 
strike-slip corridor kinematics. The results of the present study 
therefore provide a simple mechanical explanation for the par-
titioning of the deformation in strike-slip corridors within the 
Alboran Domain during the inversion (e.g., reactivation of an 
inherited structure, here the rift transform fault). However, note 
that it will be diffi cult to identify sinistral strike-slip indicators 
in the fi eld, which would have been characteristic of the trans-
form during rifting (Fig. 7) prior to the dextral reactivation during 
inversion, although sinistral kinematics have been locally identi-
fi ed (Sosson et al., 1998). Furthermore, anomalous mineraliza-
tions are observed along the Coín corridor (Esteban et al., 2011) 
and can testify to fl uid circulation along the transforms, although 
further investigations are needed to fully justify this.

In the Rif, paleo–transform faults should be oriented 
NW-SE, while paleo–rift axes should be roughly NE-SW 
(Fig. 8C). Although it is diffi cult to validate a paleo–rift axis 
north of Beni Bousera from structural data, the late Oligocene/
early Aquitanian sediments are present mainly there (Figs. 1 and 
8B). A paleo–transform fault east of the Beni Bousera body strik-
ing at N150° is well correlated with a N150° highly dipping fault, 
which allows direct contact between upper-crustal rocks (Gho-
marides) and mantle rocks (see Fig. 3C). Moreover, Rossetti et al. 
(2013) recently stressed the importance of N150° sinistral strike-
slip faults that are parallel to our inferred paleo–transform fault 
orientation. More generally, the present study proposes a new 
tectonic framework for future studies that could identify normal 
or sinistral faults in upper-crustal rocks in the fi eld that have been 
inherited from the oblique rifting history.

Finally, we can integrate our restoration into the plate- 
tectonic framework and compare our reconstruction with geody-
namic models proposed in the past. The amount of slab rollback 
and the direction of trench migration are matters of controversy 
(see summaries in Chertova et al., 2014; Frasca et al., 2015). The 
inferred NNE-SSW direction of stretching, mainly supported 
by the restored direction of ductile shearing at the Moho dur-
ing the oblique rifting (Fig. 7), favors a NW-dipping subduction 
zone along the Western Mediterranean (from Gibraltar or south-
east of Iberia), which initiated in the Oligocene and rolled back 
mainly to the S-SW (Faccenna et al., 2004; Jolivet et al., 2006; 
Gueguen et al., 1998; Wortel and Spakman, 2000). This geody-
namic model will nevertheless need to be amended in order to 
account for back-arc rifting and mantle exhumation at 20 Ma, as 
supported by the present study. Further studies are also required 
to identify the former Oligocene–Miocene magmatic arc system 
through structural or geophysical studies.

CONCLUSIONS

The following conclusions can be drawn from our study.
(1) The Tertiary stage of exhumation of the western Albo-

ran peridotites was related to extensional exhumation in a 
back-arc continental rift during the Oligocene–Miocene.

(2) The ductile shearing trends at the Moho in the different 
outcropping bodies of the western Alboran peridotites 
can be used to constrain the rift geometry.

(3) 2-D numerical models of continental rifting indicate that 
the observed opposite shearing senses at the Moho were 
related to different positions of the peridotite bodies rela-
tive to the rift axis.

(4) Back rotations, based on paleomagnetic and tectonic con-
straints, show a high consistency of N20-directed shear-
ing at the Moho in a N-S–trending oblique rift system.

(5) The restored N-S oblique rift system was composed of sev-
eral NW-SE rift axes connected by NNE-SSW transforms.

(6) Paleo–transform faults and paleo–rift axes are inherited 
structures and partly controlled the Miocene tectonics of 
the western Alboran Domain.
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